Graph-Based Semi-Supervised Learning
نویسندگان
چکیده
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer vision, natural language processing, and other areas of Artificial Intelligence. Recognizing this promising and emerging area of research, this synthesis lecture focuses on graphbased SSL algorithms (e.g., label propagation methods). Our hope is that after reading this book, the reader will walk away with the following: (1) an in-depth knowledge of the current stateof-the-art in graph-based SSL algorithms, and the ability to implement them; (2) the ability to decide on the suitability of graph-based SSL methods for a problem; and (3) familiarity with different applications where graph-based SSL methods have been successfully applied.
منابع مشابه
Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملLarge-Scale Graph-based Semi-Supervised Learning via Tree Laplacian Solver
Graph-based Semi-Supervised learning is one of the most popular and successful semi-supervised learning methods. Typically, it predicts the labels of unlabeled data by minimizing a quadratic objective induced by the graph, which is unfortunately a procedure of polynomial complexity in the sample size n. In this paper, we address this scalability issue by proposing a method that approximately so...
متن کاملSemi-supervised classification based on random subspace dimensionality reduction
Graph structure is vital to graph based semi-supervised learning. However, the problem of constructing a graph that reflects the underlying data distribution has been seldom investigated in semi-supervised learning, especially for high dimensional data. In this paper, we focus on graph construction for semisupervised learning and propose a novel method called Semi-Supervised Classification base...
متن کاملSemi-supervised Learning by Sparse Representation
In this paper, we present a novel semi-supervised learning framework based on `1 graph. The `1 graph is motivated by that each datum can be reconstructed by the sparse linear superposition of the training data. The sparse reconstruction coefficients, used to deduce the weights of the directed `1 graph, are derived by solving an `1 optimization problem on sparse representation. Different from co...
متن کاملGraph-Based Semi-Supervised Learning as a Generative Model
This paper proposes and develops a new graph-based semi-supervised learning method. Different from previous graph-based methods that are based on discriminative models, our method is essentially a generative model in that the class conditional probabilities are estimated by graph propagation and the class priors are estimated by linear regression. Experimental results on various datasets show t...
متن کامل